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In this paper, the optimization of the parameters for two-stage mounting isolation system
is studied. The maximum entropy approach is applied to deal with the non-di!erentiable
optimization problems. Results of numerical examples con"rm the e$ciency and accuracy of
the proposed method, which is also suitable for the optimization of other kind of isolation
system, such as Ruzicka isolation system (Ding wen-jing 1988 ¹heory on <ibration
Reduction, Tsinghua University Publishing House, Ruzicka 1967 Journal of Engineering and
Industries ASME 89), etc

( 2001 Academic Press
1. INTRODUCTION

As an ideal solution system, two-stage mounting isolation system (TSMIS), is widely used in
practice, such as sensitive instruments on ships or planes, high-speed cars, and so on. The
e!ectiveness of a TSMIS depends on its structural parameters (relative mass, damping ratio,
frequency ratio). Therefore, it is worth optimizing such parameters of the system. The model
of a TSMIS without force is as shown in Figure 1 [1, 2].

The di!erential equations derived from the Newton's second law that describes the
motion of this system are
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block; and u is the position of the supporting structure.
Employing the expressions

u
1
"S

k
1

m
1

, u
2
"S

k
2

m
2

, m
1
"

c
1

2Jk
1
m

1

, m
2
"

c
2

2Jk
2
m

2

,

0022-460X/01/240591#09 $35.00/0 ( 2001 Academic Press



Figure 1. Model for the two-stage mounting isolation system.
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A known property of TSMIS is that its transmissibility curve, as a function of the
frequency ratio g, has two peaks (see Figure 2). The object of the optimization of the
parameters for a TSMIS is to minimize the largest ordinate of the curve at the set value k of
the relative mass and the set value m

2
of the damping ratio. In order to design a good e!ect

isolation system, it is requisite to calculate its optimum parameters. Two cases involving the
optimization to TSMIS are put forward in practice as follows:
(1) For the given parameters relative mass k, natural frequency ratio f and damping ratio
m
2
, one can determine the optimum value m*

1
at which the minimum of the largest ordinate

of the transmissibility curve is secured. It is a one-dimensional optimization problem.
(2) For the given relative mass k and damping ratio m

2
, the problem is to "ndout the

optimum value f * and m*
1

at which the maximum ordinate of the transmissibility curve
reaches the minimum. This is a two-dimensional optimization problem.

Most often a kind of numerical method is investigated to solve such problems. The
method is based on the known property of the TSMIS, that is the presence of three invariant
points [1, 2] (denoted by A, B, C ) within the transmissibility curves, whose ordinates at the
"xed value k and the "xed value m

2
do not depend on the damping ratio m

1
(see Figure 3).

Take problem (2), for example, to illustrate the solving procedure in detail. Using the above
property, compute the tangents to the curves at the invariant point A with various damping



Figure 2. Transmissibility curve for two-stage mounting isolation system.

Figure 3. The result of one-dimensional optimization for a TSMIS; both the x-co-ordinate and ordinate are
logarithmic scale.
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ratio m
1
, respectively, the damping ratio m*

1
at which the tangent to the curve has the

minimum inclination is chosen as the optimal parameter wanted. Obviously, it is not
a satisfactory method in terms of convergence, e!ectiveness and accuracy. For this reason,
we will treat problems (1) and (2) with a more e!ective numerical method*the maximum
entropy approach (MEA) [3, 7].

2. MAXIMUM ENTROPY APPROACH

Consider the following constrained minimum problem:

min f (x),

s.t. h
j
(x))0, j"1, 2,2, m, x"x(x

1
, x

2
,2 , x

n
)3Rn.

If the objective function f (x) and the constrained functions h
1
(x), h

2
(x) ,2, h

m
(x) are

smooth, the problem is called di!erentiable optimization (DO); else, it is called
non-di!erentiable optimization (NDO). Among NDO problems there exist a special class
called semi-in"nite minimax problem which can be formulated of the form [3, 4]
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Problem A:

min f (x)"max
y3R1

u (x, y),

s.t. h
i
(x, y))0, i"1, 2,2 , l.

Such problems appear frequently in engineering optimization [5], such as control system
design, optimization of mechanism synthesis, and so on. A common feature of such
problems is that their objective functions are not di!erentiable.

Studies [3, 4] show that problems in the form of Problem A can be treated with MEA
theoretically. The MEA, an approximating method solving NDO, is based on the
approximation of the max function by means of a smooth function (see, for instance,
reference [6]) such that the solution of the NDO problem can be obtained by solving the
DO. The maximum entropy function model of Problem A is [3, 6]

Problem B:

min f
1
(x)"

1

p
ln P

b

a

exp (pu(x, y)) dy

s.t. h
i
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p
ln P

b
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exp (ph
i
(x, y)) dy)0, i"1, 2,2 , l,

where p is a large positive number (generally 105}108).
According to references [3, 7], the maximum function f

p
(x) has the following two

properties:

Theorem 2.1. For every given x3Rn, f
p
(x) decreases with increasing p.

Theorem 2.2. For every given x3Rn, maxy3[a, b] u (x, y))f
p
(x))maxy3[a, b] u (x, y)#

ln (b!a)/p, and f
p
(x)Pmaxy3[a, b] u(x, y) as pPR.

Since Problem B including the integral operation which is not suitable for computer, we
divide the whole interval [a, b] into a number of smaller ones and approximate

f
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where y
j
"a#( j/K) (b!a) ( j"1, 2,2 , K), K denotes the number of all smaller

intervals. Substituting equations (3) and (4) into Problem B yields
Problem C:

min f K
p
(x)

s.t. hK
i
(x))0, i"1, 2,2, l.
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Hence, from Theorems 2.1 and 2.2, we obtain

min f K
p

(x)Pmin f (x) when kPR and pPR.

3. ALGORITHM

In order to solve the NDO problems in engineering practice by MEA, one must describe
their mathematical models properly. For the previous two optimization problems (see
section 1), they can be given by the expression

Problem D:
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1
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g
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Here, ¹ (g ; k, m
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, m
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, f ) is the same as in section 1.

Algorithm
The following steps can state the MEA (see also Figure 4):

For a given problem in the form of Problem A (see before),
(i) Start with an initial point x

1
. Set P"105, k"1.

(ii) Divide the interval [a, b] into 2k small parts with the same size and construct the set

D
k
"My

j
D j"0, 1,2 , 2kN with y

0
"a, y

2k"b.

(iii) According to equations (3) and (4), construct the functions f k
p
(x) and hk

i
(x),

i"1, 2,2 , l.
(iv) Solve the approximating Problem C by penalty function method (PFM) [8], and

obtain the solution x
k
.

(v) If u (x
k
, y))max

y3D
k

u (x
k
, y)

and
max

1)i)l

h
i
(x

k
, y))0

for every y3[a, b], then stop the procedure by taking

x
opt

+x
k

Otherwise, set k"k#1 and go to step (ii).

4. NUMERICAL RESULTS AND DISCUSSION

Many numerical examples can be given using the MEA. In this section, two examples on
the optimization of the parameters for TSMIS are given to illustrate the validity of the



Figure 4. Flowchart of MEA.
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proposed method. Note that the numerical operation is implemented on a desktop
computer with Pentium I processor (133M).

Figure 3 shows the one-dimensional optimum results for a TSMIS with the following
parameters: relative mass k"0)5, frequency ratio f"1)6 and damping ratio m

2
"0 (see

Problem D). In Table 1, the optimum solutions agree with that in reference [9] (m
1
"0)741,

¹*(g)"4)136). Besides, from Table 1, it can be found that both the computing e$ciency
and accuracy of the proposed method are satisfying.

The second example (see Problem E) is to "nd the optimum values of the damping ratio
m
1

and the frequency ratio f of a TSMIS with various relative mass k under the condition

0(f)1)93, m
2
"0.

The optimum results are as shown in Table 2 (see also Figure 5). In Table 2, the optimal
solution at k"2)0 coincides with that in reference [9] (0)521, 1)830). From Table 2, we can
see that the relative mass k has little impact on the optimal value of f *, which is the most



TABLE 1

Numerical results obtained with MEA

Initial point m(1)
1

Optimum value m*
1

Objective value ¹*(g) Computing time (s)

0)74 0)7412266839 4)13648137 10
0)5 0)7412289275 4)13648132 12
0)9 0)7412308774 4)13648128 13
1)0 0)7412243882 4)13648141 15

Figure 5. A comparison of two- and three-dimensional optimization with k"2)0; both the x-co-ordinate and
ordinate are logarithmic scale.

TABLE 2

Numerical results obtained with MEA initial point (m(1)
1

, f (1) )"(0)5, 1)5)

Relative mass Optimum values Objective value Computing
k (m*

1
, f *) ¹* (g) time(s)

2)0 (0)5210390499, 1)83022195971) 2)4903013497 48
1)8 (0)5348943261, 1)83012128117) 2)5162042900 74
1)5 (0)5591507951, 1)83012159941) 2)5713904570 58
1)0 (0)6141602886, 1)83013055161) 2)7518876051 60
0)5 (0)7141738611, 1)83018098217) 3)3367609295 70
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important point of Problem E. In fact, when increasing the upper boundary of the frequency
ratio f, the optimum value f * also increases (see Table 3, here 0(f)2)0).

Solving the problem again with di!erent damping ratio m
2

and di!erent upper boundary
of f, we "nd that the optimum value f * only depends on the boundary of f, i.e., f * is equal to
the upper boundary of f. Here, we must pay attention to one point, that is, the optimum
value f * is not equal to but less than the upper boundary of f, this is because in the previous
algorithm, the penalty function method [8] is used at step (v). Thus, we obtain:

Problem B can be transformed into Problem A if only we assign the upper boundary of
the frequency ratio f to the optimum frequency ratio f *.

As a result, both Problems (A) and (B) can be regarded as one-dimensional optimization
problem. Since in Problem A both the object function f (x) and the constrained function



TABLE 3

Numerical results obtained with MEA initial point (m(1)
1

, f (1) )"(0)5, 1)5)

Relative mass Optimum values Objective value Computing
k (m*

1
, f *) ¹* (g) time(s)

2)0 (0)5208427145, 1)9001842271) 2)3502907311 50
1)8 (0)5450014979, 1)9001923301) 2)3718485250 75
1)5 (0)5670773052, 1)9001935629) 2)4264466258 56
1)0 (0)6174429037, 1)9002031211) 2)6003875966 68
0)5 (0)7097867351, 1)9002497308) 3)1512139666 70
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h(x, y) are optional, the previous algorithm can be suitable for the optimization of other
kind of isolation system such as Ruzicka isolation system [9, 10], etc. The advantage of
MEA is obvious. In addition, that the optimum objective value ¹* (g) increases as the
relative mass k falls corresponds to the conclusion in references [2, 9]. From this, the
validity of the proposed algorithm is demonstrated.

Furthermore, employing the MEA, one can deal with a multi-dimension NDO easily.
The outcome ( f *"1)829979, m*

1
"0)899993, m*

2
"0)500074, object value ¹* (g)"

1)559649) of a three-dimensional optimization problem with k"2)0 (see Problem F) is as
shown in Figure 5 from which one can easily "nd that the result of the three-dimensional
optimization is better than that of the two-dimensional optimization. The reason lies in the
more constraint conditions the former considered.

Problem F:

min
m
1
, m

2
, f

max
g

¹ (g ; k, m
1
, m

2
, f ),

s.t. 0)g)10, 0(f)2)0, 0)m
1
(1)0 0)m

2
(1)0.

5. CONCLUSION

This paper has explored the application of the MEA in the optimization of the
parameters for TSMIS. An algorithm based on MEA is presented. The given numerical
examples have demonstrated its applicability and e$ciency.

REFERENCES

1. J. I. SOLIMAN and E. ISMAILZADEH 1974 Journal of Sound and <ibration 36, 527}539.
Optimization of unidirectional viscous damped vibration isolation sysem.

2. C. M. HARRIS and C. E. CREDE 1976 Shock and <ibration Handbook, 2nd Edition. New York:
McGraw-Hill Book Company, Inc.

3. H. ZHEN-YU, S. ZU-HE 1996 Chinese Science Bulletin 41, 1550}1554. A maximum entropy
method for a sort of nonlinear minimax problems.

4. R. HETTICH and K. O. KORTANEK 1993 SIAM Review 35, 380}429. Semi-in"nite programming:
theory, methods, and applications.

5. K. K. ISSAC 1993 ¹ransaction of the American Society of Mechanical Enginners Journal of
Mechanical Design 115, 978}987. A non-di!erentiable optimization algorithm for constrained
minimax linkage function generation.



TWO-STAGE MOUNTING ISOLATION SYSTEM 599
6. L. XING-SI 1991 Science in China Series A 34, 1467}1473. An aggregate function method for
nonlinear programming.

7. T. HUAN-WEN, Z. LI-WEI, W. XUE-HUA 1993 Computational Mathematics 15, 268}275.
A maximum entropy method for a sort of constrained non-di!erentiable optimization problems.

8. S. M. CHUNG 1978 Nonlinear Programming 3, 197}215. New York: Academic Press. Exact penalty
algorithms for nonlinear programming.

9. D. WEN-JING 1988 ¹heory on <ibration Reduction. Beijing: Tsinghua University Publishing
Company.

10. J. E. RUZICKA 1967 Journal of Engineering for Industry, American Society of Mechanical Engineers
89, 729 }740. Resonance characteristics of unidirectional viscous and coulomb-damped vibration
isolation systems.


	1. INTRODUCTION
	Figure 1
	Figure 2
	Figure 3

	2. MAXIMUM ENTROPY APPROACH
	3. ALGORITHM
	Figure 4
	TABLE 1
	Figure 5
	TABLE 2
	TABLE 3

	5. CONCLUSION
	REFERENCES

